Given that 1 mole contains 6.02x10^23 molecules, 3.0x10^23 is just around half a mole. Then we check the number of moles for each choice:
A. This is approximately half a mole, since the molar mass of Br2 is 159.8 g/mol.
B. He has a molar mass around 4 g/mol, so this is 1 mole.
C. H2 has a molar mass of 2.02 g/mol, so this is 2 moles.
D. Li has a molar mass of around 6.97 g/mol, so this is around 2 moles.
Therefore the only choice that fits is A. 80 g of Br2.
Answer:
compound
Explanation:
A molecule is the smallest particle in a chemical element or compound that has the chemical properties of that element or compound. Molecules are made up of atoms that are held together by chemical bonds. These bonds form as a result of the sharing or exchange of electrons among atoms.
<span>The difference between an element and a compound is that an element is a substance made of same type of atoms, whereas a compound is made of different elements in definite proportions. Examples of elements include iron, copper, hydrogen and oxygen. Examples of compounds include water (H2O) and salt (Sodium Chloride - NaCl) </span>
Answer:
Atoms
Explanation:
According to the law of conservation of matter, matter is neither created nor destroyed, so we must have the same number and kind of atoms after the chemical change as were present before the chemical change.
Answer:
300 mM
Explanation:
In order to solve this problem we need to calculate the line of best fit for those experimental values. The absorbance values go in the Y-axis while the concentration goes in the X-axis. We can calculate the linear fit using Microsoft Excel using the LINEST function (alternatively you can write the Y data in one column and X data in another one, then use that data to create a dispersion graph and finally add the line of best fit and its formula).
The <u>formula for the line of best fit for this set of data is</u>:
So now we <u>calculate the value of </u><u><em>x</em></u><u> when </u><u><em>y</em></u><u> is 1.50</u>: