Answer:
The position of the spring in terms of g, m & k is 
Explanation:
Stiffness of the spring = k
Mass = m
When a mass m is attached with the spring then spring stretched. in that case the force exerted on the spring is equal to weight of the mass attached.
⇒ Force exerted on the spring F = k x
⇒ m g = k x
⇒ 
This is the position of the spring in terms of g, m & k.
Wood frogs have this adaptation where they accumulate urea in their bodies and convert their liver glycogen to glucose to act as cryoprotectants. This prevents the formation of ice crystals in their bodies that could cause damage cells during freezing in winter.
To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,

Replacing the values,



Therefore the intesity of the light after it has passes through both polarizers is 
Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
Answer:
velocity
Explanation:
because the si unit of mass is kg, velocity is m/s, acceleration is m/S2 , moment is kgm2/s . so 5 is given as velocity.