Answer:
Change in molarity, temperature, volume/pressure depending on the conditions given
Explanation:
It really depends on the type of a reaction, however, we may apply general trends and see every possibility:
- if we increase the concentration of products, then, according to the principle of Le Chatelier, the equilibrium will shift toward the formation of products;
- if we have an endothermic reaction, increasing heat will lead a shift to the right and toward formation of products, since heat might be considered a reactant as well;
- if we have an exothermic reaction, removing heat/decreasing temperature will lead to an increase in products, as we're removing one of our products, heat, and system will try to rebuild the amount of heat lost forming the other products as a result as well;
- if we have gaseous substances in a reaction, an increase in pressure will shift the equilibrium to the right if we have a greater amount in moles of reactant gases compared to products, this is also known as a decrease in volume;
- if we have gaseous substances in a reaction, a decrease in pressure will shift the equilibrium to the right if we have a greater amount in moles of product gases compared to reactants, this is also known as an increase in volume.
Answer:
0.01 psi
Explanation:
If you look at the data points plotted on the graph, the slope of the line touches 0.1 for the y-axis when it is at 20 for the x-axis.
The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.