Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
Atoms are divisible contrary to the early beliefs that the smallest "indivisible" matter is an atom. When an atom loses its identity it means that they are divisible. Atoms chemically react with other kinds of atoms thus changing their activity.
They certainly are not that important to our lives, but it’s good to know :)
Answer: Some signs of a chemical change are a change in color and the formation of bubbles. The five conditions of chemical change: color chage, formation of a precipitate, formation of a gas, odor change, temperature change.
Answer:
The answer is (B.) Chlorine
Explanation:
Its because i took the test
Kinetic Energy Statement
Kinetic energy is energy that a body possess as a result of its motion. Kinetic energy as it is mathematically written is the "classic statement" of: Kinetic energy is equal to half the mass of an object times its velocity squared.
There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let us look at some of the kinetic energy examples and learn more about the different types of kinetic energy.
Hope this helped!
❤️