Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
Given :
A compound has a molar mass of 129 g/mol .
Empirical formula of compound is C₂H₅N .
To Find :
The molecular formula of the compound.
Solution :
Empirical mass of compound :

Now, n-factor is :

Multiplying each atom in the formula by 3 , we get :
Molecular Formula, C₆H₁₅N₃
The balanced chemical equation for the standard formation reaction of liquid acetic acid is given as ,
→ 
The reaction that form the products from their elements in their standard state is called formation of reaction .The acetic acid consist C , H , and O , So, determine their standard state . Carbon is graphite at 25°C and 1 atm , whereas hydrogen and oxygen are diatomic gases . Hence , we start with unbalanced reaction.
→ 
The balanced chemical equation for the standard formation reaction of liquid acetic acid as,
→ 
The combustion of liquid acetic acid is given as,
→
ΔH =-873
learn more about balancing chemical equation
brainly.com/question/15052184
#SPJ4
Answer:
Scale is the right answer
Explanation:
The scale is a sentence that relates distance on the map to distance on Earth
The best description is A