<span>35.0 mL of 0.210 M
KOH
molarity = moles/volume
find moles of OH
do the same thing for: 50.0 mL of 0.210 M HClO(aq) but for H+
they will cancel out: H+ + OH- -> H2O
but you'll have some left over,
pH=-log[H+]
pOH
=-log[OH-]
pH+pOH
=14</span>
Answer:
See explaination
Explanation:
Since X is more reactive than Y
=> X is oxidized to X2+ and Y2+ is reduced to Y
Overall cell reaction is:
X(s) + Y2+(aq) => X2+(aq) + Y(s)
please kindly see attachment for further solution.
Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
Answer:
See explanation
Explanation:
A. Constitutional or structural isomers have the same molecular formula but different structural formulas.
B. Conformational isomers are compounds having the same atom to atom connectivity but differ by rotation about one or more single bonds.
C. Stereo isomers are compounds having the same molecular mass and atom to atom connectivity but different arrangement of atoms and groups in space.
I. Enantiomers are stereo isomers (optical isomers particularly) that are non-superimposable mirror images of each other.
II. Diasteromers are optical isomers that are not mirror images of each other.
Both diasteromers and enantiomers are types of optical isomers which in turn is one of the types of stereo isomers.
Stereo isomers differ from conformational isomers in that the arrangement of atoms in stereo isomers is permanent while conformational isomers results from free rotations in molecules about single bonds.