Molar mass of CO2 = 44.01 g/mol
Taking into account the scientific notation, the result of the subtraction is 6.5×10⁵.
<h3>Scientific notation</h3>
First, remember that scientific notation is a quick way to represent a number using powers of base ten.
The numbers are written as a product:
a×10ⁿ
where:
- a is a real number greater than or equal to 1 and less than 10, to which a decimal point is added after the first digit if it is a non-integer number.
- n is an integer, which is called an exponent or an order of magnitude. Represents the number of times the comma is shifted. It is always an integer, positive if it is shifted to the left, negative if it is shifted to the right.
<h3 /><h3>Subtraction in scientific notation</h3>
You want to subtract two numbers in scientific notation. It should be noted that when the numbers to be added do not have the same base 10 exponent, the base 10 power with the highest exponent must be found. In this case, the highest exponent is 5.
Then all the values are expressed as a function of the base 10 exponent with the highest exponent. In this case: 5.00×10⁴=0.500×10⁵
Taking the quantities to the same exponent, all you have to do is subtract what was previously called the number "a". In this case:
7.00×10⁵ - 0.500×10⁵= (7.00- 0.500)×10⁵= 6.5×10⁵
Finally, the result of the subtraction is 6.5×10⁵.
Learn more about scientific notation:
brainly.com/question/11403716
brainly.com/question/853571
#SPJ1
Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
E=hc/λ =6.626×10^-34×3 ×10^8 / 3×10^7 × 10^-9 = 6.626×10 ^-24J.
Ionic and covalent bonds are both strong intermolecular forces. They are generally both crystalline in structure. But relatively speaking, ionic bonds are much stronger. As a consequence, they have inherent properties of higher boiling points, higher melting points, lower volatility, etc. Also, ionic bonds display conductive properties because they are strong electrolytes. <em>Thus, the answer is 5) higher melting points.</em>