Answer:
Waves; wavelength; electromagnetic energy; ultraviolet light.
Explanation:
Sound are mechanical waves that are highly dependent on matter for their propagation and transmission.
Sound travels faster through solids than it does through either liquids or gases.
Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.
Hence, sound and light are both found as waves, with a variety of wavelength. The sun, a source of light waves specifically, releases a type of electromagnetic energy. It can be found as UVA or UVB types. These lights give off different levels of ultraviolet light, some of wich can be harmful.
Additionally, the ultraviolet spectrum is divided into three categories and these are; UVA, UVB and UVC.
Answer:
Explanation:
The region around a charged particle where another charged particle experiences a force of attraction or repulsion is called electric field.
The strength of electric field is defined as the force experienced by the unit positive test charge.
E = F / q
Electric field strength is a vector quantity and it is measured in newton per coulomb.
Where, F is the force of attraction or repulsion between the two charges and q is the test charge on which the electric field strength is to be calculated.
The strength of electric field is more if the field is strong. It means more be the electric field strength at a point more be the electric field.
Because the temperature remains constant, we can apply Boyle's Law which states that
pV = constant
where
p = pressure
V = volume
Define the two states of the gas.
State 1
Pressure = p₁
Volume = 1000 ml
State 2
Pressure = p₂
Volume = 500 ml
Apply Boyle's law.
1000p₁ = 500p₂
2 = p₂/p₁
By halving the volume, the pressure doubles.
Answer:
The pressure increases by a factor of 2.
Answer:
3.1 m/s
Explanation:
First, find the time it takes for the cat to land. Take down to be positive.
Given:
Δy = 0.61 m
v₀ = 0 m/s
a = 9.81 m/s²
Find: t
Δy = v₀ t + ½ at²
(0.61 m) = (0 m/s) t + ½ (9.81 m/s²) t²
t = 0.353 s
Now find the horizontal velocity needed to travel 1.1 m in that time.
Given:
Δx = 1.1 m
a = 0 m/s²
t = 0.353 s
Find: v₀
Δx = v₀ t + ½ at²
(1.1 m) = v₀ (0.353 s) + ½ (0 m/s²) (0.353 s)²
v₀ = 3.1 m/s