The force between the molecules involved in the bond is 6. 426 *10^-11 Newton
<h3>How to determine the force</h3>
Using the formula:
F = K[q1 x q2]/D^2
where K is coulombs constant =9 *10 ^9 Nm^2/C^2.
q1 and q2 = charges = 1.60x10 -20C
d = distance between the charges = 2x10 -10 m
Substitute the values into the formula
F =
F = 
F = 
F =
Newton
Thus, the force between the molecules involved in the bond is 6. 426 *10^-11 Newton
Learn more about electrostatic force here:
brainly.com/question/8424563
#SPJ1
the answer is (A) the movement of the magnet relative to the coil
You should note that the melting point of mercury is -38.83°C, while the boiling point is at 356.7°C. Then, that means that there is no latent heat involved here. We only compute for the sensible heat.
ΔH = mCpΔT
The Cp of mercury is 0.14 J/g·°C
Thus,
ΔH = (411 g)(0.14 J/g·°C)(88 - 12°C)
<em>ΔH = 4,373.04 J</em>
Answer:
Explanation:
Let pressure at surface of earth be P Pa.
pressure at height of 8.1 km in air can be calculated as follows .
pressure due to column of air of 8.1 km height
= h d g , h is height , d is density of air and g is acceleration due to gravity
= 8.1 x 1000 x .87 x 9.8 = 6.9 x 10⁴ Pa .
pressure at the height of 8.1 km
= P - 6.9 x 10⁴ Pa
Pressure due to column of 16 m in the sea
= h d g
16 x 1000 x 9.8
= 15.68 x 10⁴ Pa .
Pressure at depth of 16m
= P + 15.68 x 10⁴
pressure difference between points at height of 8.1 km and pressure at point 16 m deep
= P + 15.68 x 10⁴ - P + 6.9 x 10⁴ Pa
= 22.58 x 10⁴ Pa .