Work is force*displacement if the force and displacement is parallel.
a. You can average the force over the distance so W = Fave*d
<span>b The force part of that multiplication is zero. </span>
<span>c. You can form the average force for the interval from 2 to 3 and find the work for that section and then consider the interval from 3 to 4, find the work and add the 2 work results.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:

Explanation:
The three main particles that make an atom are:
- Proton: its mass is
, it carries an electric charge of +e (
), and it is located in the nucles of the atom
- Neutron: its mass is
, it carries no electric charge, and it is also located in the nucleus of the atom
- Electron: its mass is
, it carries an electric charge of -e (
), and it is located outside the nucleus
Answer:
Change in specific internal Energy
Explanation:
Given:
- Mass of the gas, m=0.4 lb
- Initial pressure and volume are

- Final pressure and temperature are

- Heat transfer from the gas is 2.1 Btu
Since the process is isotropic we have

So the final volume of the gas is calculated.
Work in any isotropic is given by w

According to the first law of thermodynamics we have

So the Specific Internal Change is given by

So the specific Change in Internal energy is calculated.
You don't need to do any calculations, you are already given that n=1.5
n is index of refraction. it's 1.5
Answer:
Double the current
Explanation:
The energy delivered by the heater is related to the current by the following relation:
E= 
let R * t = k ( ∴ R and t both are constant)
so E= k 
Now let:
E2= k I₂^2
E2= 4E
⇒ k I₂^2= 4* k 
Cancel same terms on both sides.
I₂^2= 4* 
taking square-root on both sides.
√I₂^2 = √4* I^2
⇒I₂= 2I
If we double the current the energy delivered each minute be 4E.