1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anuta_ua [19.1K]
3 years ago
10

why can planes fly but boats cant and why can boats float but not planes and saying planes fly because of the wind or air is not

correct .
Engineering
2 answers:
Aleksandr-060686 [28]3 years ago
4 0

Answer:

Planes can fly because they have wings and jet turbines and boats cant they need wings and planes cant float because there is to much weight

Tanya [424]3 years ago
4 0
Planes can fly because of their wings but they are too much weight to float :)
You might be interested in
The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
masha68 [24]

Answer:

86 mm

Explanation:

From the attached thermal circuit diagram, equation for i-nodes will be

\frac {T_ \infty, i-T_{i}}{ R^{"}_{cv, i}} + \frac {T_{o}-T_{i}}{ R^{"}_{cd}} + q_{rad} = 0 Equation 1

Similarly, the equation for outer node “o” will be

\frac {T_{ i}-T_{o}}{ R^{"}_{cd}} + \frac {T_{\infty, o} -T_{o}}{ R^{"}_{cv, o}} = 0 Equation 2

The conventive thermal resistance in i-node will be

R^{"}_{cv, i}= \frac {1}{h_{i}}= \frac {1}{30}= 0.033 m^{2}K/w Equation 3

The conventive hermal resistance per unit area is

R^{"}_{cv, o}= \frac {1}{h_{o}}= \frac {1}{10}= 0.100 m^{2}K/w Equation 4

The conductive thermal resistance per unit area is

R^{"}_{cd}= \frac {L}{K}= \frac {L}{0.05} m^{2}K/w Equation 5

Since q_{rad}  is given as 100, T_{o}  is 40 T_ \infty  is 300 T_{\infty, o}  is 25  

Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain

\frac {300-T_{i}}{0.033} +\frac {40-T_{i}}{L/0.05} +100=0  Equation 6

\frac {T_{ i}-40}{L/0.05}+ \frac {25-40}{0.100}=0

T_{i}-40= \frac {L}{0.05}*150

T_{i}-40=3000L

T_{i}=3000L+40 Equation 7

From equation 6 we can substitute wherever there’s T_{i} with 3000L+40 as seen in equation 7 hence we obtain

\frac {300- (3000L+40)}{0.033} + \frac {40- (3000L+40)}{L/0.05}+100=0

The above can be simplified to be

\frac {260-3000L}{0.033}+ \frac {(-3000L)}{L/0.05}+100=0

\frac {260-3000L}{0.033}=50

-3000L=1.665-260

L= \frac {-258.33}{-3000}=0.086*10^{-3}m= 86mm

Therefore, insulation thickness is 86mm

8 0
3 years ago
To provide some perspective on the dimensions of atomic defects, consider a metal specimen that has a dislocation density of 105
GenaCL600 [577]

Answer:

62.14\ \text{miles}

6213727.37\ \text{miles}

Explanation:

The distance of the chain would be the product of the dislocation density and the volume of the metal.

Dislocation density = 10^5\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^5\times 1000=10^8\ \text{mm}\\ =10^5\ \text{m}

1\ \text{mile}=1609.34\ \text{m}

\dfrac{10^5}{1609.34}=62.14\ \text{miles}

The chain would extend 62.14\ \text{miles}

Dislocation density = 10^{10}\ \text{mm}^{-2}

Volume of the metal = 1000\ \text{mm}^3

10^{10}\times 1000=10^{13}\ \text{mm}\\ =10^{10}\ \text{m}

\dfrac{10^{10}}{1609.34}=6213727.37\ \text{miles}

The chain would extend 6213727.37\ \text{miles}

3 0
3 years ago
Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of poun
Alex17521 [72]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Note: This question is incomplete and lacks necessary data to solve. But I have found the similar question on the internet. So, I will be using the data from that question to solve this question for the sack of concept and understanding.

Data Given:

x = 27 , 44 , 32 , 47, 23 , 40, 34, 52

y = 30, 19,  24,  13 , 29,  19,  21,  14

It is given that,

∑x = 299

∑y = 167

∑x^{2} = 11887

∑y^{2} = 3773

We are asked to verify the above values manually in this question.

So,

1. ∑x = 299

Let's verify it:

∑x = 27 + 44 + 32 + 47 + 23 + 40 + 34 + 52

∑x = 299

Yes, it is equal to the given value. Hence, verified.

2. ∑y = 167

Let's verify it:

∑y = 30 + 19 +  24 + 13 + 29 + 19 +  21 +  14

∑y = 169

No, it is not equal to the given value.

3. ∑x^{2} = 11887

Let's verify it:

For this to find,  first we need to square all the value of x individually and then add them together to verify.

∑x^{2} = 27^{2} + 44^{2} + 32^{2} + 47^{2} + 23^{2} + 40^{2} + 34^{2} + 52^{2}

∑x^{2} = 11,887

Yes, it is equal to the given value. Hence, verified.

4. ∑y^{2} = 3773

Let's verify it:

Again, for this we need to find the squares of all the y values and then add them together to verify it.

∑y^{2} = 30^{2} + 19^{2} +  24^{2} + 13^{2} + 29^{2} + 19^{2} +  21^{2} +  14^{2}

∑y^{2}  = 3,845

No, it is not equal to the given value.

4 0
3 years ago
BOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
sergejj [24]

Answer:

BOO

Explanation:

8 0
2 years ago
Which of the following is NOT true about hydraulic systems?
Dmitry [639]

Answer: The answer is D

D.In hydraulic systems, the operating temperatures must be kept between 170�F and 180°F 

Explanation:

The operating temperature for hydraulic systems is 140°F and below. Anything above this temperature is too high and will reduce the useful life of hydraulic fluid.

Most often problems associated with hydraulic systems are caused by fluid contaminated with particulate matter.

7 0
3 years ago
Other questions:
  • Discuss the impact of the changing urban center. Include the impacts on political, economic, and social roles and opportunities.
    12·1 answer
  • If a barrel of oil weighs 1.5 kN, calculate the specific weight, density, and specific gravity of the oil. The barrel weighs 110
    7·1 answer
  • Air at 27°C and a velocity of 5 m/s passes over the small region As (20 mm × 20 mm) on a large surface, which is maintained at T
    6·1 answer
  • The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage needed to
    8·1 answer
  • Explain the function of both of the organelles pictured below.
    14·1 answer
  • Who was the American founder and leader of the Shakers in the 1770’s who advocated equality, individual responsibility, and peac
    11·2 answers
  • All of the following are examples of capital intensive industries EXCEPT: *
    15·2 answers
  • Why is California a good place for engineers to build suspension bridges?
    12·1 answer
  • A hammer can be used to see how a mineral breaks. If you observe square chunks of the mineral when broken, what can you conclude
    15·1 answer
  • You have three gear wheels a, b and c connected to each other,if you turn the first gear wheel "a" clockwise what will happen to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!