1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
2 years ago
10

What is the most important part of a successful Election Day?

Engineering
2 answers:
wlad13 [49]2 years ago
8 0

Answer: voting of course

Explanation:

Ymorist [56]2 years ago
7 0
The most successful part of election day is casting your vote by mail or in person.
You might be interested in
For a short time a rocket travels up and to the left at a constant speed of v = 650 m/s along the parabolic path y=600−35x2m, wh
julia-pushkina [17]

Answer:

Detailed working is shown

Explanation:

The attached file shows a detailed step by step calculation..

4 0
3 years ago
Water vapor at 100 psi, 500 F and a velocity of 100 ft./sec enters a nozzle operating at steady sate and expands adiabatically t
almond37 [142]

Answer:

a)exit velocity of the steam, V2 = 2016.8 ft/s

b) the amount of entropy produced is 0.006 Btu/Ibm.R

Explanation:

Given:

P1 = 100 psi

V1 = 100 ft./sec

T1 = 500f

P2 = 40 psi

n = 95% = 0.95

a) for nozzle:

Let's apply steady gas equation.

h_1 + \frac{(v_1) ^2}{2} = h_2 + \frac{(v_2)^2}{2}

h1 and h2 = inlet and exit enthalpy respectively.

At T1 = 500f and P1 = 100 psi,

h1 = 1278.8 Btu/Ibm

s1 = 1.708 Btu/Ibm.R

At P2 = 40psi and s1 = 1.708 Btu/Ibm.R

1193.5 Btu/Ibm

Let's find the actual h2 using the formula :

n = \frac{h_1 - h_2*}{h_1 - h_2}

n = \frac{1278.8 - h_2*}{1278.8 - 1193.5}

solving for h2, we have

h_2 = 1197.77 Btu/Ibm

Take Btu/Ibm = 25037 ft²/s²

Using the first equation, exit velocity of the steam =

(1278.8 * 25037) + \frac{(100)^2}{2}= (1197.77*25037)+ \frac{(V_2)^2}{2}

Solving for V2, we have

V2 = 2016.8 ft/s

b) The amount of entropy produced in BTU/ lbm R will be calculated using :

Δs = s2 - s1

Where s1 = 1.708 Btu/Ibm.R

At h2 = 1197.77 Btu/Ibm and P2 =40 psi,

S2 = 1.714 Btu/Ibm.R

Therefore, amount of entropy produced will be:

Δs = 1.714Btu/Ibm.R - 1.708Btu/Ibm.R

= 0.006 Btu/Ibm.R

3 0
3 years ago
The heat rate is essentially the reciprocal of the thermal efficiency. a)- True b)- False
jeyben [28]

Answer:

a). TRUE

Explanation:

Thermal efficiency of a system is the defined as the ratio of the net work done to the total heat input to the system. It is a dimensionless quantity.

Mathematically, thermal efficiency is

        η =  net work done / heat input

While heat rate is  the reciprocal of efficiency. It is defined as the ratio of heat supplied to the system to the useful work done.

Mathematically, heat rate is

       Heat rate = heat input / net work done

Thus from above we can see that heat rate is the reciprocal of thermal efficiency.

Thus, Heat rate is reciprocal of thermal efficiency.

4 0
3 years ago
If you've wondered about the flushing of toilets on the upper floors of city skyscrapers, how do you suppose the plumbing is des
Marina86 [1]

Answer:

<em>The plumbing is designed to reduce the impact of pressure forces due to the height of skyscrapers. This is achieves by narrowing down the pipe down to the basement, using pipes with thicker walls down the basement, and allowing vents; to prevent clogging of the pipes.</em>

<em></em>

Explanation:

<em>Pressure increases with depth and density</em>. In skyscrapers, a huge problem arises due to the very tall height of most skyscrapers. Also, sewage slug coming down has an increased density when compared to that of water, and these two factors can't be manipulated. The only option is to manipulate the pipe design. <em>Pipes in skyscrapers are narrowed down with height, to reduce accumulation at the bottom basement before going to the sewage tank. Standard vents are provided along the pipes, to prevent clogging of the pipes, and pipes with thicker walls are used as you go down the basement of the skyscraper, to withstand the pressure of the sewage coming down the pipes.</em>

3 0
3 years ago
A solid circular cylinder of mass m, radius r, and length l is pivoted about a transverse axis
SashulF [63]
To be honest i have no idea
8 0
3 years ago
Other questions:
  • What can your employer do to protect you from overhead power lines?
    8·1 answer
  • a sprue is 12 in long and has a diameter of 5 in at the top. The molten metal level in the pouring basing is taken to be 3 in fr
    13·2 answers
  • Here you go!!!!!!!!!!!!!!!!!1
    8·1 answer
  • What are the 5 major forest types?
    5·2 answers
  • 6. Dr. Li boils water using a kettle with a 1.5 kW Nichrome (80% Ni and 20% Cr) heating element (resister heater). The diameter
    6·1 answer
  • Consider that a system has two entities, Students, Instructors and Course. The Student has the following properties: student nam
    12·1 answer
  • Mnsdcbjksdhkjhvdskjbvfdfkjbcv hjb dfkjbkjfvvfebjkhbvefgjdf
    7·2 answers
  • Pls help me it’s due today
    8·1 answer
  • 9. Imagine that you're performing measurements on a circuit with a multimeter. You measure a total circuit
    14·2 answers
  • He is going ___ in the hot air ballon​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!