1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
5

If you have a mass of 50 kg on Earth, what is your weight in Newtons?

Physics
2 answers:
Bond [772]2 years ago
5 0
Weight on any planet is (mass) x (acceleration of gravity there).

Acceleration of gravity on Earth is about 9.8 meters per second² .
So weight of 50 kg on Earth is  (50 x 9.8) = <u>490 newtons</u>.

(That's about  110.2 pounds.)
marusya05 [52]2 years ago
3 0
<span>Your weight will be 50 x 10 = 500 N

Considering g = 10 m/s</span>²
You might be interested in
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
2 years ago
1. When an object's distance from another object is changing it must be
slega [8]
An object is in motion if its distance from another object is changing. An object is in motion if it changes position relative to a reference point. An reference point is a place or object used for comparison to determine if something is moving.
3 0
3 years ago
What is 3600Hz has in rpm?​
Setler [38]

Answer:

Explanation:

N=Rotor Speed in Revolution per minute(rpm)

for P=4 and N=3600, f comes out to be 120 Hz.

So frequency of voltage produced is 120 Hz. But this is not practical. Generally 4-Pole generator has N=1500rpm(for 50 Hz) or 1800rpm for 60 Hz. Two pole generator can have N=3600rpm(f=60Hz).

The most practical situation is generator having N=3600Hz with 2 Poles.

Hope It will be helpful!!!

8 0
3 years ago
For the circuit in the previous part, what happens to the maximum current if the frequency is doubled and the inductance is halv
tamaranim1 [39]

Answer:

Following are the responses to these question:

Explanation:

Since the max^{m} is the current of ckt which depend on the reactance which   inductor that also enables the ckt and inductor resistance (X_L) for capacities

\to X_{C}=\frac{1}{W L}

for

\to X_{L}=wL

When w \longrightarrow 2w

L\longrightarrow \frac{L}{2}

then

\to X_{L}=2 w \times \frac{L}{2}=wL

 therefore, X_{L} remains at the same so, the maximum current remains the in same ckt.

4 0
2 years ago
Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward
Leno4ka [110]

Answer:

Anna is correct.

Explanation:

Anna is right as a satellite is in free fall because it keeps falling toward Earth, meaning that gravity is the only force acting on it. Tom is incorrect because an object does not have to accelerate at a certain speed to be considered to be in free fall. As long as gravity is the only force acting upon the object, it is considered to be in free fall.

4 0
3 years ago
Other questions:
  • A wave traveling in water has a frequency of 250 Hz and a wavelength of 6.0 m. What is the speed of the wave
    10·1 answer
  • If 50 mL of each of the liquids in the answer choices were poured into a 250 mL beaker, which layer would be directly above a sm
    8·1 answer
  • A body moving with a velocity of 20 m/s begins to accelerate at 3 m/s2. How far does the body move in 5 seconds?
    13·2 answers
  • Which statements accurately describe Dmitri Mendeleev’s contributions to the development of the periodic table? Check all that a
    12·2 answers
  • What is the resistance of a 1.3-m-long copper wire that is 0.30 mm in diameter?
    9·1 answer
  • A man is at a car dealership, looking for a car to buy. He looks at the sticker on the driver’s window of a car and sees that th
    9·1 answer
  • A projectile is shot horizontally at 23.4 m/s from the roof of a building 55.0 m tall. What is the time necessary for the projec
    7·1 answer
  • After a projectile is fired into the air, what is the acceleration in the x-direction? (Assume no air resistance.)
    7·2 answers
  • How do I learn French fast for an examination​
    5·1 answer
  • Potential energy = 0 J Kinetic energy =
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!