The only thing you need to know in order to solve this task is that <span>plank length (which is force x), should equal the increase in potential energy, so what we have now : (mass)* g * (height).
It has to look like that: </span>
<span>F * 3.0 = 150 x 9.81 x 1.20
Then solve for F, the result should be in newtones = 588N
Do hope it makes sense.</span>
Answer:
a) 46.5º b) 64.4º
Explanation:
To solve this problem we will use the laws of geometric optics
a) For this part we will use the law of reflection that states that the reflected and incident angle are equal
θ = 43.5º
This angle measured from the surface is
θ_r = 90 -43.5
θ_s = 46.5º
b) In this part the law of refraction must be used
n₁ sin θ₁ = n₂. Sin θ₂
sin θ₂ = n₁ / n₂ sin θ₁
The index of air refraction is n₁ = 1
The angle is this equation is measured between the vertical line called normal, if the angles are measured with respect to the surface
θ_s = 90 - θ
θ_s = 90- 43.5
θ_s = 46.5º
sin θ₂ = 1 / 1.68 sin 46.5
sin θ₂ = 0.4318
θ₂ = 25.6º
The angle with respect to the surface is
θ₂_s = 90 - 25.6
θ₂_s = 64.4º
measured in the fourth quadrant
Answer:
b
Explanation:
The space shuttle, in circular orbit around the Earth, collides with a small asteroid which ends up in the shuttle's storage bay.
This form of collision is called inelastic collision. And inelastic collision momentum is conserved but the kinetic energy is not conserved. Hence the correct option is b. only momentum is conserved.
Explanation:
When the wire is connected to a battery, the compass needle moves and changes its position. This happens because the needle magnetizes the copper wire, thus, creating a force.
While the current in the wire produces a magnetic field and exerts a force on the needle. The insulation on the wire becomes energized and exerts a force on the needle. Hence, the compass needle moves and changes its position.