Answer : The value of Ka for acetic acid is, 
Explanation :
The chemical formula of acetic acid is,
.
The chemical equilibrium reaction will be:

Given:
pH = 2.96
First we have to calculate the concentration of hydrogen ion.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
![2.96=-\log [H^+]](https://tex.z-dn.net/?f=2.96%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=1.096\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.096%5Ctimes%2010%5E%7B-3%7DM)
That means,
![[H^+]=[CH_3COO^-]=1.096\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BCH_3COO%5E-%5D%3D1.096%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COOH]=0.0602-(1.096\times 10^{-3})=0.0591M](https://tex.z-dn.net/?f=%5BCH_3COOH%5D%3D0.0602-%281.096%5Ctimes%2010%5E%7B-3%7D%29%3D0.0591M)
The expression for reaction is:
![K_a=\frac{[CH_3COO^-][H^+]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BCH_3COO%5E-%5D%5BH%5E%2B%5D%7D%7B%5BCH_3COOH%5D%7D)


Thus, the value of Ka for acetic acid is, 
Answer:
Percent by mass of water is 56%
Explanation:
First of all calculate the mass of hydrated compound as,
Mass of Sodium = Na × 2 = 22.99 × 1 = 45.98 g
Mass of Sulfur = S × 1 = 32.06 × 1 = 32.06 g
Mass of Oxygen = O × 14 = 16 × 14 = 224 g
Mass of Hydrogen = H × 20 = 1.01 × 20 = 20.2 g
Mass of Na₂S0₄.10H₂O = 322.24 g
Secondly, calculate mass of water present in hydrated compound. For this one should look for the coefficient present before H₂O in molecular formula of hydrated compound. In this case the coefficient is 10, so the mass of water is...
Mass of water = 10 × 18.02
Mass of water = 180.2 g
Now, we will apply following formula to find percent of water in hydrated compound,
%H₂O = Mass of H₂O / Mass of Hydrated Compound × 100
Putting values,
%H₂O = 180.2 g / 322.24 g × 100
%H₂O = 55.92 % ≈ 56%
Answer:
32
Explanation:
because the number of heliem is your aswer
The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g