The height of the object will be -5.19 cm
A concave mirror's reflecting surface curves inward and away from the light source. Light is reflected inward to a single focus point via concave mirrors. Concave mirrors, in contrast to convex mirrors, produce a variety of images depending on the object's to the mirror.
Given an object 24.0 cm from a concave mirror creates a virtual image at -33.5 cm. if the image is 7.25 cm tall
So let,
v = Image distance from the mirror = -33.5 cm
u = object distance from the mirror (concave) = 24 cm
hi = Image height = 7.25 cm
h = height of the object = ?
Using below formula to find height of the object
-v/u = hi/h
Putting all value in the formula we get
-(-33.5)/(-24) = 7.25/h
h = -5.19 cm
Therefore the height of the object will be -5.19 cm
Learn more about Concave mirror here:
brainly.com/question/3727024
#SPJ10
Answer:
7.39 m/s
Explanation:
Applying
K.E = 1/2mv²..................... Equation 1
Where K.E = Kinetic Energy, m = mass of the ball, v = velocity of the ball.
Make v the subject of the equation
v = √(2K.E/m)................. Euqation 2
From the question,
Given: K.E = 30 J, m = 1.1kg
Substitute these values into equation 2
v = √(2×30/1.1)
v = √54.54
v = 7.39 m/s
Answer:
first one i think is this. work = 1/2 kx^2 = 1/2 Fx
2nd, is 0.08 J
Explanation:
EE = ½ kx²
EE = ½ (400 N/m) (0.02 m) ²
EE = 0.08.
THIRD, Velocity of the stone is 4 m/s when it leaves catapult.
Answer:
Point 2.
Explanation:
Potential energy is simply defined as the energy stored in an object due to its position. It is can be represented mathematically by:
P.E = mgh
Where:
P.E is the potential energy.
m is the mass of the object.
g is acceleration due to gravity.
h is the height to which the object is located.
From the above equation, we can thus say that potential energy depends on the height of the object since the mass of the object is always constant i.e as the height of the object increase, the potential energy also increases and as the height of the object decrease, the potential energy also decreases.
Now, considering the diagram in the question given, we can see that point 2 is the lowest height to which the rider is located. At this point i.e point 2, the rider will have the least potential energy.
Answer:
orbital speed of the electrons in their orbit will increase
Explanation:
As we know that centripetal force for electrons will be due to electrostatic attraction force of electron.
So it is given as

so we have

now on the left side if the force of attraction will increase and hence there must be the change in that part of equation
So here at the same position the speed of the electron
So we can say that correct answer will be
orbital speed of the electrons in their orbit will increase