Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>
Answer:3
Explanation:
First ball is thrown with horizontal velocity while other ball is dropped from cliff such that both have zero vertical velocity. So both balls have to cover a distance equal to the height of cliff with same initial velocity.
time taken is given by 
where h=height of cliff
g=acceleration due to gravity
horizontal velocity to first ball will make the ball to travel more horizontal distance as compared to second ball.
Option 3 is correct
OF COURSE !
The gravitational force between two objects doesn't ONLY depend on the product of their masses. It also depends on the distance between them.
I'm not even going to work out the numbers for my example. I'm just going to state without proof that at the top of the 2nd frame, the gravitational force between you and your bowling ball is greater than the gravitational force between you and the whole darn Andromeda galaxy ! My reasoning is based on the fact that your bowling ball is maybe 1 foot from your center of mass, whereas the Andromeda galaxy is more like 2.5 million light years from it. That right there is going to give your bowling ball a big advantage when it comes to gravity !