D.Neither High- nor low-pressure systems lead to rain
Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
Answer:
2.52 m/s
Explanation:
When the man takes a step, his foot is stationary while his body revolves around it. At the point when his body is directly above his foot, there will be no normal force at his maximum speed.
Sum of the forces in the radial direction:
∑F = ma
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 0.650 m:
v = √(9.8 m/s² × 0.650 m)
v = 2.52 m/s
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for DAC:
⇒
Now for the BAC:
⇒
Now, differentiating w.r.t x:
For maximum angle, = 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 =
After solving the above eqn, we get
x =
The observer should stand at a distance equal to x =
Answer:
Probability of tunneling is
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm =
Max velocity of the tennis ball, = 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:
Kinetic energy of the tennis ball, KE' =
Now, the distance the ball can penetrate to is given by:
Thus
Now,
We can calculate the tunneling probability as:
Taking log on both the sides: