Answer:
1670 ml
Explanation:
molarity x Volume (Liters) = moles => Volume (Liters) = moles/Molarity
Volume needed = 2.50mol/1.50M = 1.67 Liters = 1670 ml.
Answer:
When the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy
Explanation:
The answer that "the entropy will is increases" is correct as:
The water at 90° C i.e at higher temperature is mixed with the water at 10° C i.e the water at the lower temperature.
The water at lower temperature will have molecules with lower energy while the water with higher temperature will have molecules undergoing high thermal collisions. Thereby, when the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy.
Therefore, the answer is correct with respect to the water at lower temperature.
Meanwhile, for the water at higher temperature , the temperature of the system will decrease. Thus, the entropy of the water at higher level will decrease.
Answer:
13
Explanation:
atomic molar mass of 27 grams per mole. Al has 13 protons (hence number 13) and it most common ...
The answer is (1). The electrons transfer form one reactant to another means that there is the change of valence. For other choices, the valence of reactant does not change.