Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s
Answer:33
Explanation:
F = frequency
N = Node count
w = wave lenght
v = wave velocity
L = distance wave traveled
First find wave length of laser
w = (2/(N))*(L)
w = (2/(10))*(8)
w = 1.6
then using (w), find velocity
V = (w)(F)
V = (1.6)*(108)
V = 288
Plug in V and the new frequency to solve for new node count
F = NV/2L
(600) = (N)*(288) / 2 * (8)
(N) = 33.33
there are 33 nodes
Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.