Answer: The number 4 indicates 4 electrons.
Explanation: We are given an electronic configuration, which is:

Here,
- The letters denote the sub-shells of an element.
- The numbers written before the letters which are 1, 2 and 2 represents the Principle Quantum Number and these represents the energy level of the sub-shells.
- The number which are written in the superscripts which are 2, 2 and 4 denotes the electrons which are present in the sub-shell.
Hence, 4 indicates 4 electrons present in 2p sub-shell.
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
Answer:
c) No, because Celsius is not an absolute temperature scale
Explanation:
converting 5 oC to kelvin which is the absolute temperature scale gives = 273 + 5 = 278 K
and converting 20 oC to kelvin = 20 + 273 = 293 K
the ratio = 278 / 293 = 0.94 approx 1 not 4
I believe the answer is C, n = 3, l = 3, m = 3. The magnetic quantum number, or
<span>ml</span>, can only take values that range from <span>−l</span> to <span>+l</span>, as you can see in the table above.
For option C), the angular momentum quantum number of equal to ++2<span>, which means that <span>ml</span> can have a maximum value of </span>+2<span>. Since it is given as having a value of </span>+3**, this set of quantum numbers is not a valid one.
The other three sets are valid and can correctly describe an electron.
Answer:
<h2>Density = 0.8 g/cm³</h2>
Explanation:
The density of an object can be found using the formula
<h3>

</h3>
From the question
mass of kerosene = 36.4 g
volume of kerosene = 45.6 mL
To find the density substitute the values into the above formula and solve
We have
<h3>

</h3>
= 0.7982
We have the final answer as
<h3>Density = 0.8 g/cm³</h3>
Hope this helps you