9.3 x 10⁻⁶N
Explanation:
Given parameters:
Mass 1 = 70kg
Mass 2 = 2000kg
distance = 1m
Unknown:
force between them =
Solution:
The force between the two masses will be a gravitational force of attraction.
F = 
G is universal gravitation constant = 6.67430×10−¹¹ N⋅m²/kg²
r is the distance between the two masses
Substituting the parameters:
F =
= 9.3 x 10⁻⁶N
Learn more:
Universal gravitation constant
brainly.com/question/1724648
#learnwithBrainly
Answer: 75 ft
Explanation:
Breaking distance = Speed²/ 20
= 30²/20
= 45 feet
Stopping distance = Speed + braking distance
= 30 + 45
= 75 ft
Answer:
42.5W
Explanation:
To solve this problem we must go back to the calculations of a weighted average based on the time elapsed thus,

We need to calculate the average power dissipated by the 800\Omega resistor.
Our values are given by:


Aplying the values to the equation we have:



Answer:
14.0 cm
Explanation:
Draw a free body diagram of the block. There are three forces: weight force mg pulling down, elastic force k∆L pulling down, and buoyancy ρVg pushing up.
Sum of forces in the y direction:
∑F = ma
ρVg − mg − k∆L = 0
(1000 kg/m³) (4.63 kg / 648 kg/m³) (9.8 m/s²) − (4.63 kg) (9.8 m/s²) − (176 N/m) ∆L = 0
∆L = 0.140 m
∆L = 14.0 cm