Answer:
C is the excess reactant.
Explanation:
Reaction is C + O2 --> CO2
1mol of C required to react with 1mol O2
Therefore 15 - 10 = 5moles of C will be in excess
Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH
A chemical reaction that removes electrons from an atom is called "O<span>xidation".
The term came from late 18th century from French.
When the electrons are removed from an atom it increase its valence.</span>
When comparing single bonds between atoms of comparable types, the stronger the bond is, the bigger the atom, the weaker it is.
The length of the X-H bond lengthens while the strength of the bond shortens with increasing halogen size (F-H strongest, I-H weakest). When comparing single bonds between atoms of similar sorts, the larger the atom, the weaker the bond. It can be explained by the fact that less energy is required to break the bond the bigger the atom's atomic size. The force of attraction from the nucleus to the outermost orbit will be less for iodine since it has a larger atom than the other elements in the group.
Learn more about single bonds here-
brainly.com/question/16626126
#SPJ4
Answer: Option (A) is the correct answer.
Explanation:
The process in which two or more small nuclei combine together to result in the formation of a larger nuclei is known as fusion.
In Sun, four hydrogen nuclei combine together to result in the formation of helium atom. This combining of small hydrogen nuclei to form a large helium nuclei represents fusion process occurring inside the Sun.
Thus, we can conclude that to power itself, the sun is constantly generating a nuclear reaction in its core, in which hydrogen nuclei are combined to form helium. This process is known as fusion.