Answer: G00gle got you bro
Explanation:
Yea
Answer:
between 10 and 15 percent
Explanation:
How to put your load
- First load the heavy
The safe trailer starts loading correctly. Uneven weight can affect steering, brakes and swing control.
In general, 60% of the weight of the load should be in the front half of the trailer and 40% in the rear half (unless the manufacturer indicates something different). When you place the load, you want it to be balanced from side to side, keeping the center of gravity near the ground and on the axle of the trailer.
- Hold your load
After balancing the load, you must hold it in place. An untapped load can move when the vehicle is moving and cause trailer instability.
- Trailer weight
To avoid overloading the trailer, look for the recommended weight rating. It is located on the VIN plate in the trailer chassis, usually on the tongue. Confirm the Gross Vehicle Weight Classification (GVWR) before towing.
GVWR: is the total weight that the trailer can support, including its weight. You can also find this number as the Gross Trailer Weight (GTW). The weight of the tongue should be 10-15% of the GTW.
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far