Answer:
If you meant the Periodic Table it's the alkaline-earth metal
beryllium (Be)
magnesium (Mg)
calcium (Ca)
strontium (Sr)
barium (Ba)
radium (Ra)
Explanation:
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
Answer: m = 0.035kg = 35g
Explanation: Momentum p=0.140kgm/s
Velocity v=4m/s
Mass m=?
Formula-
Momentum depends on the mass of the object in motion and its velocity.
The equation for momentum is
p = mv
m = p/v
m = 0.140/4
m = 0.035kg
m = 35g
Hence, in the toy dart gun mass of the dart is 0.035kg.
Explanation:
It is given that,
Mass of concrete pilling, m = 50 kg
Diameter of wire, d = 1 mm
Radius of wire, r = 0.0005 m
Length of wire, L = 11.2
Young modulus of steel,
The young modulus of a wire is given by :
So, the wire will stretch 0.034 meters. Hence, this is the required solution.
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.