Speed=distanse/time
144/12=12
ans is 12m/s
Answer:
1.144 A
Explanation:
given that;
the length of the wire = 2.0 mm
the diameter of the wire = 1.0 mm
the variable resistivity R = ![\rho (x) =(2.5*10^{-6})[1+(\frac{x}{1.0 \ m})^2]](https://tex.z-dn.net/?f=%5Crho%20%28x%29%20%3D%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%20%5C%20m%7D%29%5E2%5D)
Voltage of the battery = 17.0 v
Now; the resistivity of the variable (dR) can be expressed as = 
![dR = \frac{(2.5*10^{-6})[1+(\frac{x}{1.0})^2]}{\frac{\pi}{4}(10^{-3})^2}](https://tex.z-dn.net/?f=dR%20%3D%20%5Cfrac%7B%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%7D%29%5E2%5D%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%2810%5E%7B-3%7D%29%5E2%7D)
Taking the integral of both sides;we have:
![\int\limits^R_0 dR = \int\limits^2_0 3.185 \ [1+x^2] \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5ER_0%20%20dR%20%3D%20%5Cint%5Climits%5E2_0%203.185%20%5C%20%5B1%2Bx%5E2%5D%20%5C%20dx)
![R = 3.185 [x + \frac {x^3}{3}}]^2__0](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5Bx%20%2B%20%5Cfrac%20%7Bx%5E3%7D%7B3%7D%7D%5D%5E2__0)
![R = 3.185 [2 + \frac {2^3}{3}}]](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5B2%20%2B%20%5Cfrac%20%7B2%5E3%7D%7B3%7D%7D%5D)
R = 14.863 Ω
Since V = IR


I = 1.144 A
∴ the current if this wire if it is connected to the terminals of a 17.0V battery = 1.144 A
Answer:
The xylem distributes water and dissolved minerals upward through the plant, from the roots to the leaves. The phloem carries food downward from the leaves to the roots. Xylem cells constitute the major part of a mature woody stem or root.
Explanation:
brainliest pls
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.
The answer is gravity. I hope this helps.