Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s
Answer:
h = 10000 m
Explanation:
The pressure applied at a depth of the liquid is given by:
P =ρgh
where,
P = Maximum Pressure to Survive = (1000)(Atmospheric Pressure)
P = (1000)(101325 Pa) = 1.01 x 10⁸ Pa
ρ = Density of sea water = 1025 kg/m³
g = 9.8 m/s²
h = maximum depth to survive = ?
Therefore,
1.01 x 10⁸ Pa = (1025 kg/m³)(9.8 m/s²)h
h = (1.01 x 10⁸ Pa)/(1025 kg/m³)(9.8 m/s²)
<u>h = 10000 m</u>
Answer:
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater ...
The best answer is b) increased turbidity from erosion.
Nonpoint source pollution generally happens as a result of many systems interacting, and is not directly attributed to one event or pollutant. Generally, natural environmental systems participate in pollution of this kind, regardless of whether or not human activity was a factor. Examples include water runoff, or erosion.
The other pollutants listed have a direct cause and direct effect, the animal waste goes directly from the animals to the ground they live on, the car shop directly sumps the oil on the ground, and the oil tank leaks directly into the earth. Erosion causing turbidity is a less direct form of pollution, and is due to the synthesis of several natural phenomena<span />
It expands and pushes the crack further aprt