Answer:
<h2>0.245cm/min</h2>
Explanation:
The volume of the spherical balloon is expressed as V = 4/3πr³ where r is the radius of the spherical balloon. If the spherical balloon is inflated with gas at the rate of 500 cubic centimetres per minute then dV/dt = 500cm³.
Using chain rule to express dV/dt;
dV/dt = dV/dr*dr/dt
dr/dt is the rate at which the radius of the gallon is increasing.
From the formula, dV/dr = 3(4/3πr^3-1))
dV/dr = 4πr²
dV/dt = 4πr² *dr/dt
500 = 4πr² *dr/dt
If radius r = 40;
500 = 4π(40)² *dr/dt
500 = 6400π*dr/dt
dr/dt = 500/6400π
dr/dt = 5/64π
dr/dt = 0.245cm/min
Hence, the radius of the balloon is increasing at the rate of 0.245cm/min
Answer:
Quantum mechanics tells us that light can behave simultaneously as a particle or a wave. ... When UV light hits a metal surface, it causes an emission of electrons. Albert Einstein explained this "photoelectric" effect by proposing that light – thought to only be a wave – is also a stream of particles.
Explanation:
please mark me as the brainliest answer and please follow me
Many of today’s mathematicians use computers to test cases that are either too time-consuming or involve too many variables to test manually, allowing the exploration of theoretical issues that were impossible to test a generation ago.
Answer: Option A
<u>Explanation:</u>
One of the most useful inventions in scientific world are the computers. We can use different programming language and create programs in them. These programs help other to solve difficult problems. Most of the theoretical problems in science can be solved by using these programming features in computer within a specific time limit.
Otherwise, earlier mathematician used to take months to solve a complex mathematical problem manually, but now with the inclusion of computers, the mathematician can solve the problems containing more number of variables or other theoretical issues.
B. their distances from the sun.
Explanation:
Absolute Magnitude:
Astronomers defines the absolute magnitude of a stars brightness in terms of how bright a star appears from a standard distance of 10 parsecs. Parsec is a unit of distance in astronomy. 10 parsecs is equal to 32.6 light years.
Apparent Magnitude:
Apparent magnitude of a star refers to how bright the star appears at its distance from the Earth.
If two stars have the same absolute magnitude but their apparent magnitude differs, the reason is that the distance of both the stars from the Earth varies. Hence their brightness differs when measured from Earth. The farther a star is from the Earth, the fainter its brightness.
Keywords: star, brightness, parsec, light years, apparent magnitude, absolute magnitude
Learn more about stars and absolute magnitude from:
brainly.com/question/13002384
brainly.com/question/1384449
#learnwithBrainly
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.