Answer:2t
Explanation:
Given
Jason throwing watermelon at speed v and it spend t time in air
time to reach max height

0=v-gt'

and time to reach bottom is also t'
t=2t'

For guy throws his watermelon at speed 2v
So total time in air will be


t''=2t
Hydraulic pressure is actually the pressure that is exerted to liquid and the pressure gets transmitted throughout the liquid. Since liquid cannot be compressed, so the pressure that was exerted on the liquid gets transmitted to the walls of the container containing the liquid. This theory is applied to the braking system of cars and some other vehicles. This is known as the hydraulic pressure. It is actually the science that is concerned with the laws of movements of a fluid and the application of this theory for engineering purpose. This theory has not only been used in cars but also in planes .
Explanation:
Work is the dot product of the force and displacement vectors.
W = F · d
In other words, it is the force times the parallel component of the distance.
W = F d cos θ, where θ is the angle between the force and distance.
Answer: 60mph
Explanation:
Given the following :
First leg travel:
Distance = 30 miles
Time of travel= 30 minutes = 0.5 hour
Second leg travel:
Distance = 60 miles
Time of travel = one hour
Average speed :
Speed = total Distance / time of travel
Total distance in miles = (30 + 60) miles = 90 miles
Total time of travel = 1 hour + 0.5 hour = 1.5 hours
Average speed = total distance traveled / total travel time
Average speed = 90 miles / 1.5 hours
Average speed = 60 miles / hour
= 60mph
Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4