Answer: because ν = velocity/λ where ν and λ are the frequency and wavelegth of the wave.
Explanation: In order to explain this problem we have to consider the relationship between frequency and wavelengths which are related by the velocity of the wave as follows ν*λ=v where ν and λ are the frequency and wavelegth of the wave. These parameters have an inverse proportionality.
Then, ν = velocity/λ
Answer:
The answer to the question is 7200
Answer:
The final velocity of the thrower is
and the final velocity of the catcher is
.
Explanation:
Given:
The mass of the thrower,
.
The mass of the catcher,
.
The mass of the ball,
.
Initial velocity of the thrower, 
Final velocity of the ball, 
Initial velocity of the catcher, 
Consider that the final velocity of the thrower is
. From the conservation of momentum,

Consider that the final velocity of the catcher is
. From the conservation of momentum,

Thus, the final velocity of thrower is
and that for the catcher is
.
Answer:
0.000625 V
Explanation:
The formula linking current , resistance and voltage is :
V = I/R
Voltage = Current / Resistance
Now we substitute values given in question :
Voltage = 0.250 / 400
Voltage (V) = 0.000625
Our final answer is 0.000625 V
Hope this helped and have a good day