I think 5.50 M x 35.0 mL x molar mass of RbOH = mass (g)
<span>Electromagnetic radiation will be emitted when any
object has a temperature above zero. The
reason behind this is that atoms within any object at a temperature above
absolute zero have energy, and thus is moving.</span>
<span>Atoms are at least partly composed of charged
particles, changed particles must be moving too.</span>
Answer:
HBr(aq) + LiOH(aq) = LiBr(aq) + H2O(l)
Explanation:
For this reaction, the reactants are the hydrobomic acid and the lithium hydroxide which produces the products lithium bromide and water.
You need to use the Ka for the acetic acid and the equilibrium equation.
Ka = 1.85 * 10^ -5
Equilibrium reaction: CH3COOH (aq) ---> CH3COO(-) + H(+)
Ka = [CH3COO-][H+] / [CH3COOH]
Molar concentrations at equilibrium
CH3COOH CH3COO- H+
0.50 - x x x
Ka = x*x / (0.50 - x) = x^2 / (0.50 - x)
Given that Ka is << 1 => 0.50 >> x and 0.50 - x ≈ 0.50
=> Ka ≈ x^2 / 0.50
=> x^2 ≈ 0.50 * Ka = 0.50 * 1.85 * 10^ -5 = 0.925 * 10^ - 5 = 9.25 * 10 ^ - 6
=> x = √ [9.25 * 10^ -6] = 3.04 * 10^ -3 ≈ 0.0030
pH = - log [H+] = - log (x) = - log (0.0030) = 2.5
Answer: 2.5