Answer:
a) T = 1,467 s
, b) A = 0.495 m
, c) v = 4.97 10⁻² m / s
Explanation:
The simple harmonic movement is described by the expression
x = A cos (wt + Ф)
Where the angular velocity is
w = √ k / m
a) Ask the period
Angular velocity, frequency and period are related
w = 2π f = 2π / T
T = 2π / w
T = 2pi √ m / k
T = 2π √ (1.2 / 22)
T = 1,467 s
f = 1 / T
f = 0.68 Hz
b) ask the amplitude
The mechanical energy of a harmonic oscillator
E = ½ k A²
A = √2 E / k
A = √ (2 2.7 / 22)
A = 0.495 m
c) the mass changes to 8.0 kg
As released from rest Ф = 0, the equation remains
x = A cos wt
w = √ (22/8)
w = 1,658
x = 3.0 cos (1,658 t)
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum when without wt = ±1
v = Aw
v = 0.03 1,658
v = 4.97 10⁻² m / s
Answer:
86 turns
Explanation:
Parameters given:
Magnetic torque, τ = 1.7 * 10^(-2) Nm
Area of coil, A = 9 * 10^(-4) m²
Current in coil, I = 1.1 A
Magnetic field, B = 0.2 T
The magnetic toque is given mathematically as:
τ = N * I * A * B
Where N = number of turns
To find the number of turns, we make N subject of formula:
N = τ/(I * A * B)
Therefore:
N = (1.7 * 10^(-2)) / (1.1 * 9 * 10^(-4) * 0.2)
N = 85.85 = 86 turns (whole number)
The number of turns must be 86.
A. <span>I .................
</span>
Answer:
The component form will be;
In the x-axis = 121.73 due west
In the y-axis = 690.35 due south
Explanation:
An image of the calculation has been attached