Answer:
C₂H₂O₃
Explanation:
The empirical formula of a compound is derived bu finding the whole ratios of the constituent elements.
In succinic acid, the ratios of carbon to hydrogen to oxygen is calculated as follows:
<u>% mass</u>
Carbon- 40.60
Hydrogen - 5.18
Oxygen - 54.22
<u>RAM</u>
Carbon -12
Oxygen - 15.994
Hydrogen -1.008
<u>No of moles elements in the compound</u>
Carbon = 40.60/12=3.3833
Oxygen = 54.22/15.994= 3.39
Hydrogen= 5.18/1.008 = 5.1389
Mole ratios of the individual elements we divide by the smallest value of the number of moles.
Carbon: Hydrogen : Oxygen
3.3833/3.3833:3.39/3.3833:5.1389/3.3833
=1:1:1.5
We can multiply the value by 2 to get the whole number ratio.
=2:2:3
The empirical formula will be:
C₂H₂O₃
Answer:
Answer for the given statements: (1) T , (2) F , (3) T , (4) F , (5) F
Explanation:
At the given interval, concentration of HI = 
Concentration of
= 
Concentration of
= 
Reaction quotient,
, for this reaction =
species inside third bracket represents concentrations at the given interval.
So, 
So, the reaction is not at equilibrium.
As
therefore reaction must run in reverse direction to reduce
and make it equal to
. That means HI(g) must be produced and
must be consumed.
Answer:
4feet
Explanation:
Because when he moves he only goes 4 miles every time I
<u>Answer:</u> The sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5730 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = (100 - 25) = 75 grams
Putting values in above equation, we get:

Hence, the sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
Answer: 12.18 u
Explanation: The average atomic mass of an element is calculated by taking the weighted average of the atomic masses of its stable isotopes.
In other words, each stable isotope will contribute to the average mass of the element proportionally to its abundance.