Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
Answer:
Brown color of the solution decreases
Explanation:
is brown in color whereas
is colorless.
Equilibrium reaction between
and
is as follows:

As per the Le Chatelier's principle, if pressure of a equilibrium is increased, the equilibrium will shift in the direction having fewer no. of moles of gases.
In the given equilibrium,
side has more no. of moles. So on increasing pressure, equilibrium will shift towards the side of
or more formation of
will take place.
Therefore, more
will decompose that will decrease the brown color of the solution as
is colorless.
Ammonia isn't an element, it's a compound made by mixing the elements Nitrogen and Hydrogen in the Haber process. Therefore, it isn't on the periodic table
Answer:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring = 8 g/mL
Explanation:
From the question given above, the following data were obtained:
Mass of ring = 32 g
Volume of water = 64 mL
Volume of water + ring = 68 mL
Density of ring =?
Next, we shall determine the volume of the ring. This can be obtained as follow:
Volume of water = 64 mL
Volume of water + ring = 68 mL
Volume of ring =?
Volume of ring= (Volume of water + ring) – (Volume of water)
Volume of ring = 68 – 64
Volume of ring = 4 mL
Finally, we shall determine the density of the ring. This can be obtained as follow:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring =?
Density = mass / volume
Density of ring = 32 / 4
Density of ring = 8 g/mL