False people can do whatever they want without people telling them what to do.
Food consumption affects the rate of alcohol absorption in the bloodstream.
Explanation:
The type of food and therefore the amount<span> of food that </span>is a gift<span> in your </span>epithelial duct once you<span> consume alcohol have </span>the foremost<span> direct </span>impact<span> on </span>the speed<span> of alcohol absorption.</span>
<span>When you consume alcohol on </span>the associate<span> empty </span>abdomen<span>, the alcohol </span>is sometimes<span> absorbed </span>within the<span> blood </span>among<span> fifteen minutes to two-and-a-half hours. If </span>you have got<span> a moderate </span>quantity<span> of food in your </span>abdomen once you<span> drink, that speed slows </span>all the way down to<span> thirty minutes </span>to a few<span> hours. If you’re drinking on a full </span>abdomen<span>, alcohol absorption ranges from </span>3 to 6<span> hours.</span>
Answer:
iron = 15000 kg 95% sulfuric acid = 27646.32 kg
Explanation:
The molar volume to a gas is 22.4 L, which means that a mole of a given gas at 0°C and 1 atm will have a volume os 22.4 L.
1 m3 - 1000 L
4870 m3 - x
x = 4870 * 1000 = 4.87 *10^6 L
1 mole - 22.4 L
y mole - 4.87 * 10^6 L
y =
= 2,17 *10^5 moles (if 100% of the H2 is used)
as 20% of it is lost, we need to know how much more we need to use.
80% - 2.17 * 10^5 moles
100% - z
z =
= 2,68*10^5 moles
so we would need 2.68*10^5 moles of iron and sulfuric acid.
1 mole of iron - 56 *10^-3 kg
2.68*10^5 moles - t
t= 2.68*56 *10^2 = 15000 kg
1 mole of sulfuric acid - 98 * 10^-3 kg
2.68*10^5 - u
u = 2.68*98 *10^2 = 26264 kg (if 100%)
95% - 26264 kg
100% - v
v =
= 27646.32 kg
Electronic transition moments are defined as the probability for a given excitation energy transition to take place. It should be evident that the transition moment depends upon the spin-orbit coupling of the electrons in both the ground and excited states.
Hope this helps :)
Have a great day!
Answer:
235 g
Explanation:
From the question;
- Volume is 400.0 mL
- Molarity of a solution is 4.25 M
We need to determine the mass of the solute K₂CO₃,
we know that;
Molarity = Number of moles ÷ Volume
Therefore;
First we determine the number of moles of the solute;
Moles = Molarity × volume
Moles of K₂CO₃ = 4.25 M × 0.4 L
= 1.7 moles
Secondly, we determine the mass of K₂CO₃,
We know that;
Mass = Moles × Molar mass
Molar mass of K₂CO₃, is 138.205 g/mol
Therefore;
Mass = 1.7 moles × 138.205 g/mol
= 234.9485 g
= 235 g
Thus, the mass of K₂CO₃ needed is 235 g