Answer:
conductor
Explanation:
A "conductor" is a material that allows the charges to pass freely from one body to the other. This causes a movement among the electrons and this means that<em> the charge will be passed entirely to the object receiving it.</em> This is also called <em>"conductive material."</em>
Examples of conductors are: <em>copper, aluminum, gold, silver, seawater, etc.</em>
The opposite of conductors are called "insulators." These do not allow the free movement of charges from one object to the other.
Examples of insulators: <em>plastic, rubber, paper, glass, wool, dry air, etc.</em>
You would want it to be greater than D. friction force
It needs be greater than the friction applied to it.
Answer:
The velocity of the wave is 12.5 m/s
Explanation:
The given parameters are;
he frequency of the tuning fork, f = 250 Hz
The distance between successive crests of the wave formed, λ = 5 cm = 0.05 m
The velocity of a wave, v = f × λ
Where;
f = The frequency of the wave
λ = The wavelength of the wave - The distance between crests =
Substituting the known values gives;
v = 250 Hz × 0.05 m = 12.5 m/s
The velocity of the wave, v = 12.5 m/s.
Answer:
Displacement method of volume measurement is no suitable
Explanation:
Displacement method of volume measurement is no suitable for the objects that do not get immersed into the water completely because of the hindrance in accuracy of the measurement.
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>