BA(OH)2 (Barium hydroxide)
Barium hydroxide is a chemical compound with the chemical formula Ba(OH)₂ₓ. The monohydrate, known as baryta or baryta-water, is one of the principal compounds of barium.
With a pH of 2, it's very acidic and far from a neutral pH and basic. I would say chemical as my answer.
Answer: According to the Bohr model, atoms emit light because excited electrons are returning to lower energy states, emitting the energy difference. This energy always has a specific wavelength because the electrons can only exist in set orbits. ... An emission spectrum is the frequencies of light emitted from an atom.
Explanation:
Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C
Answer:
- Volume = <u>2.0 liter</u> of 1.5 M solution of KOH
Explanation:
<u>1) Data:</u>
a) Solution: KOH
b) M = 1.5 M
c) n = 3.0 mol
d) V = ?
<u>2) Formula:</u>
Molarity is a unit of concentration, defined as number of moles of solute per liter of solution:
<u>3) Calculations:</u>
- Solve for n: M = n / V ⇒ V = n / M
- Substitute values: V = 3.0 mol / 1.5 M = 2.0 liter
You must use 2 significant figures in your answer: <u>2.0 liter.</u>