Answer:

Explanation:
1. Write the skeleton equation for the half-reaction
NO₃⁻ ⟶ N₂O
2. Balance all atoms other than H and O
2NO₃⁻ ⟶ N₂O
3. Balance O by adding H₂O molecules to the deficient side.
2NO₃⁻ ⟶ N₂O + 5H₂O
4. Balance H by adding H⁺ ions to the deficient side.
2NO₃⁻ + 10H⁺ ⟶ N₂O + 5H₂O
5. Balance charge by adding electrons to the deficient side.
2NO₃⁻ + 10H⁺ + 8e⁻ ⟶ N₂O + 5H₂O
The amount of charge required to reduce 2 mol of NO₃⁻ is 8 F

The balanced equation given is:
4NH3 + 3O2 .....> 2N2 + 6H2O
From this equation, we can note that 4 moles of NH3 are required to produce 2 moles of N2.
Therefore, the mole ratio of NH3 to N2 is 4:2 which can be simplified into 2:1
Explanation:
Atomic number of carbon is 6. So, 4 valence electrons are present.
Therefore, it can form 4 covalent bonds with varying bond angles by sharing its valence electrons.
Catenation is also an important property of carbon. Catenation is bonding with atoms of same element. Carbon skeleton can be formed in any direction and can vary in length, branching, and ring structure.
Elements required for making most of the molecules in living organisms are:
C, H, N, O, P and S
Carbon easily form covalents with other 5 elements.
These properties make carbon most versatile building blocks of the molecules used by living organisms.
The lower case letter represents the recessive allele.
<span>When the gases dihydrogen sulfide and oxygen react, they form the gases sulfur dioxide and water vapor. so the balanced equation is
</span>2H2S(g) + 3O2(g) → 2SO2(g) + 2H2O(l)
hope it helps