The answer is:
the molarity = 50 moles/liters
The explanation:
when the molarity is = the number of moles / volume per liters.
and when the number of moles =2.5 moles
and the volume per liters = 0.05 L
so by substitution:
the molarity = 2.5moles/0.05L
= 50 moles /L
Answer:
Specific heat of alloy = 0.2 j/ g.°C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of bold = 25 g
Heat absorbed = 250 J
Initial Temperature = 25°C
Final temperature = 78°C
Specific heat of alloy = ?
Solution:
Change in temperature:
ΔT = 78°C - 25°C
ΔT = 53°C
Now we will put the values in formula.
Q = m.c. ΔT
250 j = 25 g × c ×53°C
250 j = 1325 g.°C × c
250 j / 1325 g.°C = c
c = 0.2 j/ g.°C
I believe the correct answer is option B. Molarity is the <span>number of moles of solute that is dissolved in 1 liter of solution. It is another way of expressing concentration of a mixture especially for solutions. Percent by mass is grams solute per grams of solution. Percent by volume is liter solute per liter per solution.</span>
Answer:
c) +2 to 0
Explanation:
SO4 has a charge of -2, so the Cu attached to that has to be a +2 since the polyatomic molecule has no overall charge
Cu(s) is a solid metal and they have no charge, therefore it is zero
Copper undergoes Oxidation (gain of electrons)