In this item, we are given with the x-component of the velocity. The y-component is equal to 0 m/s. The time it takes for it to reach the volume can be related through the equation,
d = V₀t + 0.5gt²
Substituting the known values,
225 = (0 m/s)(t) + (0.5)(9.8)(t²)
Simplifying,
t = 6.776 s
To determine the distance of the student from the edge of the building, we multiply the x-component by the calculated time.
range = (12.5 m/s)(6.776 s)
range = 84.7 m
<em>Answer: 84.7 m</em>
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
Answer:
780 m to travel north
Explanation:
6 m over = 750
53 degree so it will take about 2 min to reach the destination
Answer:
16.7 s
Explanation:
T= <u>Vf - Vo</u> a= <u>F</u>
a m
4,500 / 3000 = 1.5 (a)
30 - 5 / 1.5(a) = 16.7 s
Answer:
0.72 Hz minimum frequency
Explanation:
When the damping is negligible,Amplitude is given as

here
= (6.30)/(0.135) = 46.67 N/m kg
= 1.70/(0.135)(0.480) = 26.2 N/m kg
From the above equation , rearranging for ω,

⇒ ω² =46.67 ± 26.2 = 72.87 or 20.47
⇒ ω = 8.53 or 4.52 rad/s
Frequency = f
ω=2 π f
⇒ f = ω / 2π = 8.53 /6.28 or 4.52 / 6.28 = 1.36 Hz or 0.72 Hz
The lower frequency is 0.72 Hz and higher is 1.36 Hz