Answer:
1 / i + 1 / o = 1 / f thin lens equations
i = o f / (o - f) rearranging
Lens 1: object = 30 cm f = 15.2 cm
i1 = 30 * 15.2 / (30 - 15.2) = 30.8 cm
o2 = 40.2 - 30/8 = 9.4 cm distance of image 1 from lens 2
i2 = 9.4 * 15.2 / (9.4 - 15.2) = - 24.6 cm
The final image is 24.6 cm to the left of lens 2
The first image is inverted
The second image is erect (as seen from the first image)
So the final image is inverted
M = m1 * m2 = (-30.8 / 30) * (24.6 / 9.4) = -2.69
Answer:
The power dissipated in the 3 Ω resistor is P= 5.3watts.
Explanation:
After combine the 3 and 6 Ω resistor in parallel, we have an 2 Ω and a 4 Ω resistor in series.
The resultating resistor is of Req=6Ω.
I= V/Req
I= 2A
the parallel resistors have a potential drop of Vparallel=4 volts.
I(3Ω) = Vparallel/R(3Ω)
I(3Ω)= 1.33A
P= I(3Ω)² * R(3Ω)
P= 5.3 Watts
-70560, -9.8/2 = -4.9
120^2 = 14400.
Now you multiply 14400 * -4.9 = -70560m.
Answer:
The speed, magnitude of the velocity, magnitude of the angular velocity, magnitude of the centripetal acceleration, magnitude of the net force and direction of the angular velocity are constant.
Explanation:
In uniform circular motion we have a centripetal acceleration of constant magnitude but changing direction (since it points to the center of the circle from the object). The same goes for the net (centripetal) force since F=ma. This makes the magnitude of the velocity (speed) constant but its direction changes, although keeping spinning in the same direction, which makes its angular velocity constant in both magnitude and direction.