Answer:
C. Yes, the water could be changing the phase.
Explanation:
Answer:


Explanation:
Given:
- minimum amplitude at the start of oscillation cycle,

- the first maximum amplitude after the start of oscillation cycle,

- Time taken to reach from the first minima to the first maxima,

As we know that an oscilloscope executes a wave cycle represented by a sine wave. So we can deduce that it has executed one-fourth of the cycle in going from the amplitude of 20 units to 100 units in 0.005 seconds.
<u>So the time taken to complete one cycle of the oscillation:</u>

is the time period of the oscillation
<u>We know frequency:</u>



Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
Answer:
P = 0.27R from the center
Explanation:
Given,
The radius of the uniform circular plate, R = 2R
The radius of the hole, r = R
The center of the smaller circle from the center is, d = 0.8R
The center of mass of a circular disc with a hole in it given by the formula
P = dr²/R² - r²
Where P is the distance from the center of mass located in the line joining the two centers opposite to the hole.
Substituting the given values in the above equation,
P = 0.8R x R² / 4R² - R²
= 0.27R³/R²
= 0.27R
Hence the center of mass of plate is at a distant P = 0.27R from the center