The answer to this question is A.
Answer:
The following statements are correct.
1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Wrong statements:
1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.
Explanation:
Permanent magnet. An induced magnet would be created when a piece of iron (for example) is in contact with a magnet. Temporary magnets would be something like an electromagnet. Bar magnets are permanently magnetic unless we heat them or hammer them to cause their domains to loose alignment.
Answer:
Use of telemetry and radar astronomy
Explanation:
An astronomical Unit (AU) is a unit of measuring distances in outer space, which is based on the approximate distance between the earth and the Sun.
After several years of trying to approximate the distance between the Sun and the Earth using several methods based on geometry and some other calculations, advancements in technology made available the presence of special motoring equipment, which can be placed in outer space to remotely monitor and measure the position of the sun.
The use of direct radar measurements to the sun (radar astronomy) have also made the determination of the AU more accurate.
A standard radar pulse of known speed is sent to the Sun, and the time with which it takes to return is measured, once this is recorded, the distance between the Earth and the Sun can be calculated using
distance = speed X time.
However, most of these means have to be corrected for parallax errors