Answer:
the reflected wave is inverted and the transmitted wave is up
Explanation:
To answer this question we must analyze the physical phenomenon, with an wave reaching a discontinuity, we can analyze it as a shock.
Let's start when the discontinuity is with a fixed, very heavy and rigid obstacle, in this case the reflected wave is inverted, since the contact point cannot move
In the event that it collides with an object that can move, the reflected wave is not inverted, this is because the point can rise, they form a maximum at this point.
In the proposed case the shock is when the thickness changes, in this case we have the above phenomena, a part of the wave is reflected by being inverted and a part of the wave is transmitted without inverting.
The amplitude sum of the amplitudes of the two waves is proportional to the lanería that is distributed between them.
When checking the answers the correct one is the reflected wave is inverted and the transmitted wave is up
I’m pretty sure 14 is mutations
Compare the initial mass to the final mass.
The situation is impossible mainly because we can't see Figure P6.10 .
It would undoubtedly be the same story on an another planet, until we
see the figure and understand what's going on.
THIS IS NOT THE EXACT ANSWER BUT IT MIGHT HELP
The cover slips serves two purposes: (1) it protects the microscope's objective lens from contacting the specimen, and (2) it creates an even thickness (in wet mounts) for viewing.