Given that:
k = 500 n/m,
work (W) = 704 J
spring extension (x) = ?
we know that,
Work = (1/2) k x²
704 = (1/2) × 500 × x²
x = 1.67 m
A spring stretched for 1.67 m distance.
Answer:
The tension force in the supporting cables is 7245N
Explanation:
There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

The tension force F in the supporting cables is 7245N
No. I do not agree with Stefan. Quite the contrary. I disagree
with his description of "<span>angle of incidence" as the angle between
the surface of the mirror and the incoming ray.
The correct description of "angle of incidence" is </span><span>the angle between
the NORMAL TO the surface of the mirror and the incoming ray.
Thus, the true angle of incidence is the complement of the angle that
Stefan calculates or measures.</span>