Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
From what i know it is c. it is a lever
To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a =
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a =
a =
a = 9234.6 (m/)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 * (m/)
If you have any questions on how I got to these answers, just ask!
- breezyツ
Answer:
0.25miles/min
Explanation:
Instantaneous speed of a person or an object is its speed at a particular moment usually at a period of time.
The speedometer of a car reports the instantaneous speed.
It can be mathematically expressed as;
Instantaneous speed =
At 20min the distance covered is 5miles;
Instantaneous speed = = 0.25miles/min
The gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
<h3>What is the gravitational force of the earth on the person?</h3>
The gravitational force exerted by the earth on a person standing on the earth's surface is given below as follows:
where
G = 6.67 * 10⁻¹¹
m¹ = 62 kg
m² = 5.97 * 10²⁷ kg
r = 6.4 * 10⁶ m
Therefore, the gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
Learn more about gravitational force at: brainly.com/question/940770
#SPJ1