I think it is A correct me if i am wrong hope this helps
Answer:
333K
Explanation:
Answer is actually 333.15, but to round it off, is 333
Answer:
44.62 kJ
Explanation:
Firstly, we calculate the energy needed to heat the liquid (ethyl alcohol) by using the formula:
Q = m × c × ∆T
Where;
Q = Amount of heat (J)
m = mass (g)
c = specific heat of ethyl alcohol = 2.138 J/g°C
∆T = change in temperature (°C)
According to the information given in this question;
Q = ?, m = 50.0g, ∆T = (78.4°C - 60°C) = 18.4°C
Therefore, using Q = mc∆T
Q = 50 × 2.138 × 18.4
Q (amount of energy needed to heat ethyl alcohol) = 1966.96 J
Next, we calculate and add the amount of heat needed to vaporize by using the formula;
How many kilojoules of energy are required to heat 50.0 g of ethyl alcohol from 60.0 °C to 78.4 °C and vaporize it? The specific heat of ethyl alcohol is heat of vaporization is 853 J/g.
Answer:
58.64
Explanation: You want to use the combined gas law equation (P1*V1)/(n1*T1)=(P2*V2)/(n2*T2). So first cross out what remains constant, so pressure and I assume moles (since it was not mentioned as a change). You want to change the temperature to Kelvin (always) to do work, then you can solve algebraically for the answer! Once you have your answer change it to Celsius since that's what you were asked for.
Hope this helped!