Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

Answer:
impulse = 8820 kg·
or 8820 N·s
Explanation:
Impulse J is equal to the average force
multiplied by the elapsed time Δt or in equation form, J =
Δt
As long as your force of 450 N is constant then that value is your average force
and your elapsed time is 19.4 seconds.
Multiply these values.
You will get an impulse of 8820 kg·
or 8820 N·s.
Answer:
B
Explanation:
nothing to do with black holes creating star or related
Answer:
-The battery-the power source
-Closed conducting loop
Explanation:
-To produce an electric current, the following requirements must be met:
-A battery-This is the energy source than will do work on the charge thus moving from a low energy location to high energy location.
-Closed Conducting Loop-The loop is usually made of copper wires due to their high electric conductivity.