Answer:
The molar mass of
is 96.8 g/mol
Explanation:
The given molecular formula - 
Individual molar masses of each element in the compound is as follows.
Molar mass of nitrogen - 14.01 g/mol
Molar mass of of hydrogen = 1.008g/mol
Molar mass of carbon = 12.01 g/mol
Molar mass of oxygen =16.00 g/mol
Molar mass of
is
![2\times[1(14.01)+4(1.008)]+1(12.01)+3(16.00)= 96.8g/mol](https://tex.z-dn.net/?f=2%5Ctimes%5B1%2814.01%29%2B4%281.008%29%5D%2B1%2812.01%29%2B3%2816.00%29%3D%2096.8g%2Fmol)
Therefore,The molar mass of
is 96.8 g/mol
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST
Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths. ... It was after this that Rutherford began developing his model of the atom.
<span>Salt compounds are composed of ions that form a tightly packed and ordered network, which is called a crystal lattice. It is held together by electrostatic forces known as ionic bonding. Ionic bonding refers to the chemical bond between two oppositely charged ions - a cation and an anion. This type of bond forms when there is a large electronegativity difference between two atoms. </span>