A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol
Explanation:
In the compound silver oxide (Ag₂O), for each one oxygen ion there are two silver ions. If ... - did not match any documents.
Suggestions:
Make sure that all words are spelled correctly.
Try different keywords.
Try more general keywords.
Try fewer keywords.
1st and 4th options are suitable answers, as these 2 changes are not exactly physical changes as it cant return back to original form and as well as its not cooling, so I feel its 1st and 4th options
<span>Bases and Acids are chemically opposite from each other,and there are multiple ways to distinguish how they react when dissolved in water.
One accepted definition is that an acid is any chemical substance that, when it is dissolved in water, creates a solution with hydrogen ion activity greater than pure/neutral water. That is, it donates a proton to the solution. Any substance with a pH less than 7.0 is an acid, and includes substances such as vinegar and lemon juice.
By comparison, a base is any chemical substance that, when it is dissolved in water, creates a solution in which has hydrogen ion activity less than pure/neutral water. That is, it accepts protons. Any substance with a pH greater than 7.0 is a base, and includes substances such as ammonia and baking soda.</span>