Answer:
Many tree seedlings crowd the open space and attempt to grow in the sunlight.
Answer:
0.0109 m ≈ 10.9 mm
Explanation:
proton speed = 1 * 10^6 m/s
radius in which the proton moves = 20 m
<u>determine the radius of the circle in which an electron would move </u>
we will apply the formula for calculating the centripetal force for both proton and electron ( Lorentz force formula)
For proton :
Mp*V^2 / rp = qp *VB ∴ rp = Mp*V / qP*B ---------- ( 1 )
For electron:
re = Me*V/ qE * B -------- ( 2 )
Next: take the ratio of equations 1 and 2
re / rp = Me / Mp ( note: qE = qP = 1.6 * 10^-19 C )
∴ re ( radius of the electron orbit )
= ( Me / Mp ) rp
= ( 9.1 * 10^-31 / 1.67 * 10^-27 ) 20
= ( 5.45 * 10^-4 ) * 20
= 0.0109 m ≈ 10.9 mm
Answer:
Explanation:
A )
The smallest tidal ranges are less than 1 m (3 feet). The highest tides, called spring tides, are formed when the earth, sun and moon are lined up in a row. This happens every two weeks during a new moon or full moon. Smaller tides, called neap tides, are formed when the earth, sun and moon form a right angle.
C ) The most extreme tidal range occurs during spring tides, when the gravitational forces of both the Moon and Sun are aligned (syzygy), reinforcing each other in the same direction (new moon) or in opposite directions (full moon).
Answer:
t = 402 years
Explanation:
To find the number of year that electrons take in crossing the complete transmission line, you first calculate the drift speed of the electrons. Then, you use the following formula for the current in a wire:
(1)
n: number of mobile charge carrier per volume = 8.50*10^28 e/m^3
q: charge of the electron = 1.6*10^-19 C
vd: drift velocity of electron in the metal = ?
A: cross sectional area of the wire = π r^2 = π (0.02m/2)^2 = 3.1415*10^-4 m^2
I: current in the wire = 1110 A
You solve the equation (1) for vd:

Next, you calculate the time by using the information about the length of the line transmission:

hence, the electrons will take aproximately 402 years in crossing the line of transmission