The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.
Electricity. I took something like this hope this helps :)
Answer:
In chemical compounds, atoms tends to have the electron configuration of a noble gas.
Explanation:
The noble gases are unreactive because of their electron configurations. This noble gas neon has the electron configuration of 1s22s22p6 . It has a full outer shell and cannot incorporate any more electrons into the valence shell.
The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electron configuration of a noble gas. An exception to an octet of electrons is in the case of the first noble gas, helium, which only has two valence electrons.
Answer:
(i) The angular speed of the small metal object is 25.133 rad/s
(ii) The linear speed of the small metal object is 7.54 m/s.
Explanation:
Given;
radius of the circular path, r = 30 cm = 0.3 m
number of revolutions, n = 20
time of motion, t = 5 s
(i) The angular speed of the small metal object is calculated as;

(ii) The linear speed of the small metal object is calculated as;

a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find
